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SUMMARY 
Simple methods of analysis are developed for computing the dynamic steady-state axial response of floating pile groups 
embedded in homogeneous and non-homogeneous soil deposits. Physically-motivated approximations are introduced to 
account for the interaction between two individual piles. It is found that such an interaction arises chiefly from the 
‘interference’ of wave fields originating along each pile shaft and spreading outward. For homogeneous deposits the wave 
fronts originating at an individual pile are cylindrical and the interaction is essentially independent of pile flexibility and 
slenderness. For non-homogeneous deposits the wave fronts are non-cylindrical and ray-theory approximations are 
invoked to derive pile flexibility-dependent interaction functions. 

Results are presented for the dynamic stiffness and damping of several pile groups, as well as for distribution of the 
applied load among individual piles. For deposits with modulus proportional to depth, the agreement with the few 
rigorous solutions available is encouraging. A comprehensive parameter study focuses on the effects of soil inhomogene- 
ity and pile-group configuration. It is demonstrated that the ‘dynamic group efficiency’ may far exceed unity at certain 
frequencies. Increasing soil inhomogeneity tends to reduce the respective resonant peaks and lead to smoother 
interaction functions, in qualitative agreement with field evidence. 

INTRODUCTION 

The harmonic response of pile groups is substantially affected by the dynamic interaction between the 
individual piles. Following the early numerical studies by Wolf and Von Arx’ and Nogami,’ several 
researchers have developed a variety of computational (rigorous and simplified) methods for assessing the 
pile-soil-pile interaction and computing the dynamic impedances of pile  group^.^-'^ The corresponding 
static problem was treated in References 17-19. The methods developed in these studies differ from one 
another in the simplifications introduced when modelling this complicated boundary value problem. They 
are all of an essentially numerical nature as they invariably involve discretizing each pile and the supported 
soil; hence, application of even the most simplified of them may entail some substantial computational effort, 
while in some cases these methods rely on proprietary computer codes. 

By contrast the analytical solution outlined herein was conceived while trying to explain in the classroom, in 
very simple physical terms, the causes oJ the numerically-observed ‘resonant’ peaks in the dynamic impedances 
of pile groups. But, the developed elementary explanation of pile-to-pile interaction in homogeneous soils 
leads to results in remarkable accord with rigorous solutions for a number of pile-group configurations, and 
a fairly wide range of material parameters, pile separation distances and frequencies of vibration. Naturally, 
the developed simple method has its limitations; a comparative study documenting/calibrating its per- 
formance for pile groups in a homogeneous halfspace and a homogeneous stratum has been presented by 
Dobry and Gazetas.” This paper (i) presents analytical evidence in support of the crucial assumptions 
introduced for a homogeneous halfspace by Dobry and Gazetas; (ii) extends the method to pile groups in non- 
homogeneous deposits, and compares its predictions against the limited published rigorous results for a 
halfspace whose modulus increases linearly with depth; and (iii) offers a parametric study to illustrate the 
significance of soil inhomogeneity and pile flexibility on pile-to-pile interaction. 
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t Section 1 

Figure 1. Problem geometry definition and the studied shear-modulus profiles. In all cases, soil Poisson’s ratio, v,  mass density, p ,  and 
hysteretic damping ratio, b, are assumed independent of depth. The piles are treated as elastic flexural beams 

Figure 1 illustrates the problem addressed in this paper: studying the forced vertical harmonic oscillation 
of any group of vertical floating piles embedded in homogeneous or non-homogeneous soil. Note that as a 
result of pile-to-pile interaction, the distribution of the load to the individual piles will, in general, be non- 
uniform, as a function of the frequency of oscillation. 

INTERACTION BETWEEN PILES IN A HOMOGENEOUS DEPOSIT: 
TWO CRUCIAL ASSUMPTIONS 

To determine the interaction between pile ‘a’ and pile ‘b‘, lying at an axis-to-axis distance S apart, we seek the 
harmonic head displacement W , ,  exp(iot) of pile ‘b’ due (exclusively) to waves emanating from the 
circumference of pile ‘a’; the latter is forced into a harmonic vertical head displacement W,, exp(iwt), the 
complex amplitude of which can be derived from the impedance X-(’) of the single pile. 

To this end, several physically-motivated simplifying assumptions are introduced. Justification of the most 
crucial of them is provided herein. Specifically: 

(a) It is assumed that only cylindrical SV waves are emitted from the oscillating pile ‘a’, and propagate 
radially, in the horizontal direction ( r )  only. This hypothesis is reminiscent of the shearing of concentric 
cylinders around statically loaded piled and pile groups assumed by Randolph and and is also 
somewhat similar to the ‘Winkler’ assumption introduced by NovakZ3 and already extensively used with 
success in dynamic analyses of pile  group^.^.^ 

(b) It is further assumed that these cylindrical waves emanate simultaneously from all points along the pile 
length; hence, for a homogeneous deposit, they spread out in-phase and form a cylindrical wavefront, 
concentric with the generating pile. Of course, unless the pile is rigid, the amplitude of oscillation along the 
wavefront will be a (usually decreasing) function of depth, as illustrated in Figure 2(a). A direct consequence 
of these assumptions: the shape of the variation of wave amplitude with depth along the cylindrical front 
remains unchanged as the wavefront expands in a homogeneous medium. 

The most crucial assumption, namely, that the waves are sent off simultaneously from the circumference of 
the ‘source’ pile, is discussed herein. 

To begin with, for relatively short (say, L/d < 10) and stiff ( E , / E ,  > SOOO) piles the validity of this 
simplifying assumption is self-evident, since such piles respond essentially as rigid bodies to axial loading- 
static or dynamic. To show that for a fairly broad range of pile lengths and flexuaral rigidities this assumption 
is still an adequate engineering approximation, a rigorous finiteelement study is performed. For a pile with 
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Figure 2. Schematic illustration of the ‘cylindrical wavefront’ concept that forms the basis of the developed simplified method for pile- 
to-pile interaction in a homogeneous medium: (a) spreading of SV waves from the oscillating pile; (b) the distribution of displacement 

amplitudes with depth retains a constant shape as the waves propagate radially and eventually reach the neighbouring pile 

slenderness ratio L/d = 20 and E,/E,  = 1000 and 5000, Figure 3 plots the distribution along the length of the 
pile of the real and imaginary parts of the vertical pile displacement, w = w(z), for two values (0.20 and 030) of 
the frequency factor a, = o d /  V,. Evidently, the imaginary component of w and the resulting phase angle 
remain nearly constant with depth; hence, the phase-angle differences between various points along the pile 
(also plotted in the figure) are indeed very small, confirming the proposed assumption. Of course, with much 
longer and softer piles, and at high frequency factors, one should expect these phase differences to grow larger 
and the assumption of ‘synchronous’ wave emission, on which the developed method is based, to be 
correspondingly less accurate. 

To get a further insight into the behaviour of relatively long and flexible piles, consider a very long pile 
supported by continuously distributed ‘springs’ and ‘dashpots’ that simulate the dynamic stiffness (k,) and 
radiation damping (c,) of the surrounding soil. From Angelides and Roe~set?~ Gazetas and D ~ b r y ~ ~  and 
KanakariZ6 

k, x 0-6ES(l + *&) 

c, x a; ‘‘4ndp V ,  
The latter value applies in reality only for frequencies beyond the cutoff frequency oc, that is, the natural 
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Figure 3. Distribution with depth of normalized vertical pile displacements (Imaginary part and Real part) and pile-displacement phase 
angle differences for an L/d = 20 pile in a deep homogeneous soil with: (a) E J E ,  = IOOO, and (b) EJE,  = 5OOO. Displacements of soil 
under the pile are also plotted. Results were obtained with a dynamic finite element formulation for the two shown values of the 

frequency factor 

frequency in vertical vibration of the soil deposit, while for o -= o, radiation damping is vanishingly small, 
and is a function of the (herein neglected) material soil damping. 

The governing equation of the steady-state vibration w(z)exp(iot) 

dzw(z) 
E P A P F  - (k, + ioc, - rnpw2)w(z) = 0 ( 3 )  
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where mp = ppAp is the mass of pile per unit length. For the only interesting case of wz < k,/mp (which is valid 
as long as a. d l), the solution to equation (3) that respects the radiation conditions takes the form 

w(z)  = Woexp - ( R cosoz) 2 exp ( - iR siniz) 

where W, = w(0) is the amplitude of pile-head displacement, and 

(4) 

Equation (4) represents a travelling wave of exponentially decreasing amplitude with depth. The ‘travelling’ 
phase ueIocity C, is 

(6) 
w c, = - 

0 
Rsin- 

2 

Below the stratum cutoff frequency, when c, zz 0, this case reduces to the one discussed by W ~ l f , ~ ’ * ~ *  for 
which 

Thus, even in a very long pile, waves originating at the top propagate down the pile shaft at a nearly inJinite 
phase uelocity. Hence all points along the pile perimeter would move essentially in phase. 

In general, however, C, from equation (6) is finite. For a pile with L/d = 20, E p / E s  = lo00 and pp = 1.35p, 
equation (6) yields C,/V, values that range between 91 and 123 for a. varying in the range of 0.2 to 1. Thus, on 
the average C,/ V ,  x 100 and the error committed by assuming ‘synchronous’ emission would be on the order 
of 5 per cent, for S/d = 4. This is an acceptable error for this simple method. A complete study of this problem 
is presented in Reference 29. 

With the foregoing assumptions, the variation of wave amplitude with depth along the cylindrical 
wavefront arriving at the ‘receiving’ pile ‘b’ is analogous to the amplitude variation of the ‘source’ pile ‘a’. As a 
result, the following approximate expressions are derived for the pile-to-pile dynamic interaction factor, a, : 

ca+ co (7) 

where l.ac = V , ( 1  + 2ij?)1/z and Hf) denotes the zero-order second-kind Hankel function. The last ex- 
pression, deriving from the asymptotic expansion of the Hankel functions, is a little easier to use and reveals 
that the amplitude of the interaction factor decays in proportion to the square root of Sjr ,  times a hysteretic- 
damping-dependent exponential decay factor. Moreover, the two expressions lead to only marginally 
different results. Hence, in view of the desired simplicity of the method, the latter expression has been adopted 
herein, as in Reference 20. 

Equation (8) is sufficient for computing the vertical response of any group of piles, once the response of a 
single (solitary) pile is known. To this end, the superposition procedure developed for statically loaded 
groups”* is assumed applicable for dynamic loading as well-an assumption adequately verified by 
Kaynia‘ and Sanchez-Salinero.’ 

To substantiate the developed method and, thus, provide further (indirect) support for the previously 
discussed crucial assumption, we present Figure 4. For a 2 by 2 and a 3 by 3 pile group with L/d = 15 and 
E p / E ,  = lo00 the complex vertical impedances X‘”), where n = number of piles in the group, are cast in the 
general form 

(9) ~ ( n )  = RW + i C(n) 
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Figure 4. Dynamic stiffness and damping group factors as functions of frequency: comparison of present method with rigorous solution 
of Kaynia4 for two square groups of rigidly-capped piles in a homogeneous halfspace. E,/E, = 1000, L/d = 15,jI. = 5 per cent. Adapted 

from Reference 20. The dashed lines are for the solitary single pile 

where K(") is the dynamic group stiffness, and C(") is the group damping coefficient which encompasses both 
geometric and hysteretic (p = 0.05) dissipation of energy. (In Figure 4, n = 4 and 9.) Define the 'dynamic 
stiffness group factor', k("), and the 'damping group factor', D("', as the ratios of the dynamic stiffness and 
damping coefficients, respectively, to the sum of the static stiffnesses of the individual single piles: 

where, in general, K (without an overbar) designates the static stiffness while K (with an overbar) stands for 
the dynamic stiffness. Note that at zero frequency k(") reduces to the familiar static group efficiency factor. 

In Figure 4 the predictions of the developed simple analytical method compare very well with the rigorous 
solution of K a ~ n i a . ~  Notice in particular the successful prediction of some of the detailed trends arising from 
pile-soil-pile interaction. The agreement for other pile group configurations (not shown herein)*O is also 
invariably satisfactory, although not always as remarkable as that for the pile groups of Figure 4. Some 
noticeable discrepancies ( 1: 25 per cent) in the resonant peak values start appearing as the number, n, of 
interacting piles increases to 16 (i.e. for a 4 x 4 pile group). But even in that case the prediction of the 
frequency-dependent distribution of the total applied load among the individual piles is, for all practical 
purposes, in good accord with K a ~ n i a . ~  See Reference20 for a detailed discussion of the phenomena 
observed in Figure 4, and for more results on homogeneous soils. 



DYNAMIC PILE-SOIL-PILE INTERACTION I 121 

PILE-TO-PILE INTERACTION IN NON-HOMOGENEOUS SOIL (a) RIGID PILES 

It has been frequently suggested in the geotechnical literature that the strong interaction effects computed by 
the various theoretical methods for static or dynamic loads may not be realistic. The assumption of a 
homogeneous elastic soil is held responsible for exaggerating the influence of one pile on another. Indeed, in 
many real-life situations: (i) the soil stiffness increases with depth instead of remaining constant, while (ii) pile 
installation effects and non-linear soil behaviour near the pile shaft tend to produce radial changes in the 
effective soil stiffness. This section studies the effect only of vertical non-homogeneity [factor (i)] on the axial 
response of pile groups. (Reference is made to Veletsos and Dotson3O and Sheta and Novak’ for ways to 
introduce radial inhomogeneity in approximate modelling pile installation and non-linear effects on the 
impedance of single piles and pile groups, respectively.) 

It is assumed that the soil moduli G, and E, increase with depth in a continuous form: 

with m a 0  (12) 
in which Go = the surface shear modulus, at z = 0 (Figure l), and zo is varied parametrically. Poisson’s ratio 
and mass density are retained constant. While the method is subsequently developed for an arbitrary m, 
results are presented only for three characteristic values: m = 1 /2, representative of cohesionless soil deposits; 
m = 1, representative of deposits of saturated normally-consolidated clays; and m = 2, representing deposits 
with density rapidly increasing with depth. 

Refer now to Figure 5. As the (active) pile ‘a’ undergoes a vertical rigid-body oscillation, W ,  , exp(iot), SV 
waves are emitted from every elementary surface of thickness 6z, located at a depth z from the ground surface. 
The directions of propagation of these waves (the wave ‘rays’) are not straight lines as in a homogeneous 
medium. Snell’s law of refraction 

sin [O(z’)] 
= constant 

VSV) 
requires that each wave ray be a curve, forming a continuously changing angle 8 with the vertical axis, such 
that at each depth z’ from the surface 

”s, ‘t? t 

d8 - d Vs(z’) sin 8(z’) 
ds dz‘ Vs(z’) 

- 

t 

go= 0,1 z 1 

Figure 5. In a non-homogeneous soil with wave velocity increasing continuously with depth, waves emitted from a differential element 
on the shaft of an oscillating pile follow curved rays striking the neighbouring pile at various angles. The predominant assumption of the 

present method is that these wave rays can be replaced by a single ‘average’ ray with the shown geometric characteristics 
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in which ds is measured along the ray path, and Vs(z’) is the S-wave velocity at the corresponding depth z’. 
Recognizing d8/ds as the curvature of the ray, it is evident that the shape of each ray depends on the value of 
m, which controls the modulus variation with depth [equation (1 l)]. For example, when m = 2 the velocity is 
a linear function of depth, leading to a constant curvature and thereby to a circular ray path. 

In general, several wave rays may originate at the particular depth to strike the (passive) pile ‘b’ at different 
elevations. In the interest of simplicity, it is assumed that these rays can be replaced by a single ‘average’ ray. 
To be somewhat consistent with the earlier assumption of horizontally propagating waves in a homogeneous 
medium, the ‘average’ ray is selected as the one striking pile ‘b’ at an elevation z equal to that at which the ray 
originated. Hence, the ‘average’ ray is symmetric with respect to the two piles, and the angles, 8, and 8,,, of 
emergence on the axis of pile ‘b’ and of immergence from the axis of pile ‘a’ coincide: 8, = 8, = 8,. Note that 
the final results are hardly sensitive to the foregoing choice for the ‘average’ ray; changing 60 by 25 per cent 
leads to interaction curves differing by a negligible 5 per cent. 

The angle 8, and the axis-to-axis length 1 of the ray path are readily determined by integrating the 
differential equation (14). To this end, K(z’) is first substituted from equation (11). Also, from Snell’s law 

sin8(z’) V(z’) zo + z’ 
-N- 

sine, - V(z)  = (z) 
where the approximation sign is for ignoring the difference between S-wave velocity at depth z, where the 
waves actually originate, and S-wave velocity at the depth of the hypothetical origin of the ‘average’ ray on 
the piles axis. With these substitutions one obtains the following implicit equation in 8, = f?,(z): 

mS 
2 r2 sin2’”(@ d8 = sin2’”(6,) 

60 2(zo + 4 
For an arbitrary value of m the integral in equation (16) can only be determined numerically. But for the three 
characteristic values of m studied herein, m = 1/2,1 and 2, the integral is computed analytically. For instance, 
for m = 1 equation (16) reduces to 

S 
z ,  + z 

sin’ (8,) - sin (28,) - 28, = x 

Transcendental equations like the above are solved numerically for 8,, for every depth z along the pile. For 
the case of linearly increasing velocity with depth, m = 2, 8, is derived in closed form: 

o,, = arctan (2%) (18) 

which reveals that 8, increases with z ,  and thereby that the circular ‘average’ rays become flatter as the depth 
increases (Figure 4). 

The length of the ‘average’ ray originating at depth z is 

which, for the particular case of m = 1, reduces to 

cos (8, I = 4 ( z  + z,) -.- 
sin’ (8,) 

while an arbitrary m requires a (simple) numerical integration. 
Finally, it is assumed that the ‘average’ rays involve exclusively S waves, and that along their path the wave 

amplitude decays in form similar to the asymptotic radial decay of cylindrical waves in a homogeneous 
medium [recall equation (8)]. Thus, the vertical component of the displacement amplitude imposed on pile 
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‘b’ at depth z, due to waves emanating from pile ‘a’, is 

in which 
approximation 

= c ( z )  denotes the average velocity of the soil along the particular ray path. The closed-form 

is sufficient for the required level of accuracy of this (simplified) method. 
Thus, while the waves are emitted from various depths of pile ‘a’ in phase and with identical amplitudes, i.e. 

w, l(z) = Wll, equation (21) reveals that when these waves eventually strike pile ‘b’ they are out of phase and 
have different amplitudes. But since pile ‘b’ is rigid, it experiences a vertical displacement approximately 
equal with the average of these individual wave-ray displacements, 

whence the ‘dynamic interaction factor’ is obtained by a simple (numerical) integration: 

Notice that equation (24) is a generalized version of equation (8), to which it reduces when the deposit tenc 
to a homogeneous one, i.e. as l(z) -, S and c(z) -, V,. 

Equation (24) is sufficient for computing the dynamic vertical response of any group of relatively short 
and/or stiff piles that behave as ‘rigid‘ piles (i.e. whose bottom displacement is at least 80 per cent of the top 
displacements). 

PILE-TO-PILE INTERACTION IN NON-HOMOGENEOUS SOIL (b) ‘FLEXIBLE’ PILES 

In this more general case, the displacements along the axis of a vertically oscillating single pile are not 
uniform: w1 (z) # w1 1(0) = W, of such a vertical profile, defined as the distribution of 
vertical displacements normalized to a unit auerage displacement, is a function of both depth and vibration 
frequency: 

The shape 

To arrive at a very simple yet sufficiently accurate solution, the dependence of t,hl1 on frequency is neglected 
and use is made of the static (o = 0) displacement profile, as derived from Randolph and Wroth:” 

in which 
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Figure 6. Distribution with depth of normalized dynamic and static vertical pile displacements (Absolute value, Imaginary part, Real 
part) for an L/d = 20 pile in a deep non-homogeneous deposit with (a) EJE,(L) = 500; and (b) EJEJL) = 5OOO. Displacements of soil 
under the pile are also plotted. Results obtained with a dynamic finite element formulation for the three values shown of the frequency 

factor. Notice the insensitivity of all displacement shapes to variation in frequency 

where x = Gs(L/2)/G,(L) reflects the degree of soil non-homogeneity (e.g. x = 1 for homogeneous soil, 
x = 0.50 with modulus proportional to depth, etc.) This is a reasonable engineering approximation for two 
reasons, elucidated with the help of Figure 6 (a) the shape of the absolute value of pile displacements is quite 
insensitive to variations in frequency (that is, frequency influences mainly the size of displacement amplitudes 
rather than the shape); (b) while the relative importance of the 9O0-out-of-phase (imaginary) components of 
displacement increases with increasing frequency, the shape of their distribution with depth is also insensitive 
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to frequency. Thus, for at least E,/E,(L)  2 500, the shapes of the real part, imaginary part and the absolute 
value of pile displacements are all fairly similar, hardly influenced by frequency changes. Therefore, the 
approximation of equation (26) is expected to lead to realistic results. 

The waves emitted from all points of pile ‘a’ are in phase, in view of the still large cutoff frequency below 
which the phase velocity down the pile is nearly infinite. Propagating along the ‘average’ rays, such waves 
strike pile ‘b‘ with vertical amplitudes: 

in which 

W 1 1 M  %5 + 1 1 k  0)WIl (30) 
with t,bl (z; 0) given by equations (24)-(26) and PI being the average displacement of pile ‘a’; the other terms 
are as explained for equation (1 9). 

Finally the ‘dynamic interaction factor’ is obtained from the following simple integration: 

PARAMETRIC RESULTS AND COMPARISONS 

Comparison with results of more rigorous solutions 
It is imperative to substantiate the (engineering) accuracy of the developed simplified method through 

comparisons with rigorous solutions. Few such solutions seem to be presently available for pile groups in 
non-homogeneous soil deposits. One of them, by Banerjee and Sen,16 is based on a hybrid boundary-element 
formulation and makes use of closed-form Green’s functions for harmonic loads applied within a multil- 
ayered deposit; these functions were derived by Kause13’ and require a very fine discretization of the soil 
deposit into horizontal uniform sublayers. 

The frequency variation of the complex dynamic interaction factor, a, = Real(a,) + i Imaginary(ol,), 
computed with equation (22), is compared in Figure 7 with that presented in Reference 16. The results refer to 
a deposit with soil modulus proportional to depth (m =*l ,  G,(O)/G,(L) = 0) and a practically rigid pile with 
E,/E,(L) = 10 OOO. Two pile-separation distances are considered, S = 5d and S = 10d, while the frequency is 
non-dimensionalized with the S-wave velocity at the pile tip, V,(L), to give a frequency factor: 

w d  
v, (L) 

a, = - 

The agreement between the two solutions is quite satisfactory. A noticeable discrepancy: the ‘interference’ 
peaks and valleys as predicted by the developed simple method occur at slightly greater frequencies than 
those of the Banerjee-Sen solution. 

The implications of such a discrepancy are explored in Figure 8 where the stiffness and damping group 
factors, k(’) and ZY’), of a two-pile group are plotted versus a,. The two sets of predictions now appear to be 
in much better accord, since their differences hardly exceed a mere 10 per cent. To provide a yardstick for the 
desired accuracy, Figure 8 also portrays the pile group factors for a homogeneous deposit, the shear modulus 
of which equals the average shear modulus, G,(L/2), of the non-homogeneous stratum. Note that such a 
halfspace is frequently used in practice to approximate non-homogeneous profiles and in fact, to arrive at 
reasonably good estimates of the static pile-to-pile i n t e ra~ t ion ,~~  as is the case in this figure. However, it is 
clear that significant differences exist between the dynamic pile-group responses in the two media. These 
differences will be discussed later herein. 

Another set of published boundary-element results32 was found for the distribution of the total axial load 
among the individual piles of a square 3 x 3 rigidly capped group. In addition, the Green’s-function-based 
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Figure 7. Non-homogeneous soil deposit with modulus proportional to depth Real and Imaginary parts of the pile-to-pile interaction 
factor a, (computed from equation (24) for two separation distances) are plotted as function of frequency and compared with results of a 

more rigorous formulation 

method of Kaynia4 was utilized for the same problem. Figure 9 compares the results of the three methods, for 
S/d = 4. Notice how sensitive the axial load distribution is to variations in frequency. For static and low 
frequency excitation the comer piles carry the largest portion of the applied load: their force amplitude F ,  is 
about 1-4 times the average applied force. By contrast, at the same low frequencies the central pile carries a 
very small fraction of the load. (In fact, when the piles are too closely spaced (S = 20)  our method predicts 
that the centre pile would essentially carry no load under static or low frequency excitation. The reason, as 
pointed out by Scott,lg is that the soil around the central pile ‘tends to drag this pile down, so that rather 
than resisting the applied load it is acting in the same direction’,’’ hence, the pile can comply with the rigid- 
body settlement of the group even if it carries very little or no load.) 

However, this picture changes at higher frequencies as waves emanating from other piles affect the 
response, producing undulations in the individual pile load sharing curves, as was unveiled by Sheta and 
Novak.’ The central pile is particularly sensitive to such wave interferences, since the waves emitted by the 
surrounding eight piles hit this pile with not very different phases, in view of the similar spacings (S for four of 
them and SJ2 for the other four). Hence their (favourable or unfavourable) effects add up ‘constructively’. As 
an example, assume, for a rough estimate, that the average length of the ray paths is 25 per cent greater than 
the respective pile spacing; then at wavelengths 1 x Acr where 

= 3s (33) 
1.25s + 1.25J2S 

2 
A, = 2 
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Figure 8. Comparison of stiffness and damping factors of a two-pile group with S = 5d (left) and S = 10d (right). The continuous line 
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factors of the presented method and of Banerjee and Sen which are shown in Figure 7. The circles are for a homogeneous deposit with 

shear modulus equal to G,(L/2)  
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Figure 9. Variation with frequency of the distribution of axial force amplitudes carried by the comer, centre and edge pile in a 3 x 3 
rigidly-capped pile group: comparison of the developed simple method with the solution of Banerjee and Sen16 and of Kaynia4 and 

personal communication, State University of New York at Buffalo, Feb. 1989 
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which corresponds to frequency a, x 

2n: s 2.1 __- 
= (S/d) Ac (Sld) (34) 

the central pile is pushed upward by most of the arriving waves with nearly their maximum amplitude, when 
its own load pushes downward. As a consequence, only by increasing its share of the total applied load can 
this pile be forced to follow the uniform displacement of the rigid cap. Equation (29) yields u, ,~ z 0-52 when 
S / d  = 4. Indeed, around this frequency Figure 9 shows that F ,  of the centre pile rises to a peak of 1.5 times 
the average load, while the share of the corner piles drops down to 75 per cent of the average load-a clear 
reversal of the static situation. 

Evidently, the developed simple method gives results that are in substantial agreement (both qualitative 
and quantitative) with more rigorous formulations. Discrepancies between two more rigorous formulations 
may, in fact, exceed the inaccuracy of the simple method. 

EFFECT OF SOIL NON-HOMOGENEITY, GROUP CONFIGURATION AND PILE FLEXIBILITY 

To further elucidate the role of soil non-homogeneity, Figures 10-13 plot as functions of a,  the stiffness and 
damping group factors for a number of square and linear pile group configurations and three separation 
distances. Figures 10 and 11 should be contrasted with Figures 4(a) and 4(b) corresponding to a homogen- 
eous stratum. A similar comparison is displayed in Figure 8 for a two-pile group. 

2 X 2 rigid-pile group 

nonhomogeneous soil deposit G g ( L l  I 1:~(')1 = ' 0  
r n - 1  

-2 0.0 A-- 0 . B  0.8 1 .O 

Figure 10. Effect of frequency and pile separation distance on the impednace of a group of 2 x 2 rigid and rigidly-capped piles in a non- 
homogeneous soil deposit (obtained with the present method) 
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‘1 

3 X 3 rigid-pile group 

nonhomogeneous soil deposit G s ( L l  / Gs(0) = l o  
m = l  

S/d- 3 

I 
0.2 0.4 0.6 0.b I .o 

-2 ~ , . , , , .  
0.0 

Figure 11. Eflect of frequency and pile separation distance on the impedance of a group of 3 x 3 rigid and rigidly-capped piles in a non- 
homogeneous soil deposit (obtained with the present method) 

Evidently, in non-homogeneous soils, the interference peaks of the pile-group stiffness tend to become 
shorter and patter than those associated with homogeneous soil. There are believed to be two reasons: 

1. The distances I = l(z) that the waves traverse along all the rays from pile ‘a’ to pile ‘b’ in a non- 
homogeneous medium exceed the distance S travelled in a homogeneous medium. Hence, the 
amplitudes of the incident waves, which decay as I -  ’/* and S- 1/2 in the two media, are relatively lower 
and tend to produce a smaller interaction effect in non-homogeneous soils. The differences that may 
arise from different damping decay terms exp( - b06/ c) and exp ( - BUS/ V,) in the two media are not 
clear cut, because, while l always exceeds S ,  = c(z)  may be larger or smaller than the homogeneous 
wave velocity V,,  depending on the location z. 

2. In the homogeneous soil, the waves emitted from the various points along pile ‘a’ arrive on pile ‘b’ 
exactly in phase [a single exp( - ioS/V,) term in equation (811. Thus, when this phase is 180” different 
from the phase of pile ‘b’ under its own load, it tends to produce the relatively sharp-and-high peaks 
seen in Figures 4 and 8. By contrast, in a strongly non-homogeneous medium the incident waves upon 
pile ‘b’ are not in phase; as reflected in the term exp [ - iwl(z)/E(z)] of equation (19), phase differences 
stem primarily from the varying wave velocities c ( z ) ,  and to a lesser extent from the varying length I(z) 
of the wave paths. Thus, it is not possible for all the incident waves to be 180” out of phase with the 
oscillation of pile ‘b’; thereby, their superposition [equations (22) or (26)] leads to relatively short and 
flat peaks. 
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Figure 12. Effect of soil-modulus profile [(a) homogeneous, (b) non-homogeneous] and of pile group configuration ( 2  x 1 , 2  x 2,4 x 1, 
3 x 3) on the variation of stiffness and damping factors with frequency (obtained with the developed method) 

The second of the foregoing two factors has been found to be the most significant, accounting for as much 
as 80 per cent of the computed differences in pile group response in the two media. 

The importance of pile group configuration is studied on Figure 12(a) (homogeneous deposit) and 
Figure 12(b) (soil modulus increasing linearly with depth). Two square (2 x 2 and 3 x 3) and two single-line 
(2 x 1 and 4 x 1) configurations are examined. A fairly clear trend is emerging: in both profiles, the stiffness 
and damping of the square groups exhibit the strongest undulations, with the k factors reaching peak values 
of the order of 4 (in the homogeneous stratum) and 2 (in the non-homogeneous). By contrast, the 
corresponding peaks for the single-line groups reach only about 2 and 1.4, respectively. Another interesting 
observation is that the number of piles in a single-line group has only a small effect on the dynamic group 
factors. This behaviour, which holds true not only for the 2 x 1 and 4 x 1 groups studied in Figure 12 but 
essentially for any n x 1 group, has a rather simple explanation: every new pile ‘a’ that is added on an existing 
line of piles, ‘b’, ‘c’, . . . , emits waves that are 180” out of phase with the nearby pile ‘b‘ when they are in phase 
with pile ‘c’. Thus, the new ‘constructive’ and ‘destructive’ interferences occur simultaneously, i.e. at the same 
frequency, and their combined effect on k and D is hardly felt. 

Finally, Figure 13 portrays the effect of pile flexibility on the dynamic interaction factor. The effect of 
decreasing pile flexural rigidity is insignificant, for L / d  = 20; and it remains rather small even for L/d = 4(r 
in agreement with the findings for static loading researches.” Note, however, that the developed method may 
provide only a very crude estimate of the response of very long and jlexible piles. 
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nonhomogeneous soil deposit 
G,(L)/G,(O) = 10 m = 1 

L/d = 20 S/d = 5 

H I  

-06-x- 0 0  ?--- 0 8  1 0  

a,,= w d/V,(L) 

Figure 13. Effect of pile axial flexibility on the complex-valued interaction factor in non-homogeneous deposit (obtained with the 
developed method) 

CON€LUSION 

Physically-motivated approximations of the complicated wave fields around an oscillating pile have been 
introduced to solve the problem of pile-soil-pile interaction under axial harmonic loading. Both homogen- 
eous and non-homogeneous soil deposits have been considered, and parametric results have been presented 
for the dynamic stiffness and damping of several pile groups. It is concluded that, owing to interaction effects, 
pile group impedances plotted against frequency will invariably exhibit peaks and valleys, the height and 
steepness of which decrease with increasing soil non-homogeneity. A companion paper deals with interaction 
under lateral and seismic loading. 
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APPENDIX 

List of main symbols 
a, = o d / V ,  
a, = w d / K ( L )  

dimensionless frequency for a homogeneous soil deposit 
dimensionless frequency for a non-homogeneous soil deposit 
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6. 

7. 
8. 

9. 
10. 
1 1 .  

12. 
13. 

14. 

15. 
16. 

17. 
18. 
19. 
20. 

21. 

22. 
23. 
24. 

25. 
26. 
21. 
28. 
29. 

30. 

31. 

32. 

shear wave velocity in a homogeneous soil deposit 
shear wave velocity in a non-homogeneous soil deposit at depth z 
soil shear modulus of non-homogeneous soil deposit 
soil shear modulus of non-homogeneous soil deposit at depth L 
soil shear modulus of non-homogeneous soil deposit at zero depth 
dynamic impedance of a pile or a pile group 
dynamic stiffness of a pile group 
static stiffness of a pile group 
dynamic stiffness group factor 
damping group factor 
indicates the total number of piles in a group 

REFERENCES 

1. J. P. Wolf and G. A. Von Arx, ‘Impedance function of group of vertical piles’, Proc. ASCE specialty con5 soil dyn. earthquake eng. 2, 

2. T. Nogami, ‘Dynamic group effect of multiple piles under vertical vibration’, Proc. eng. mech. div ASCE speciality con$ Austin, Texas 

3. T. Nogami, ‘Dynamic stiffness and damping of pile groups in inhomogeneous soil’, in Dynamic Response of Pile Foundatiori (hds 

4. A. M. Kaynia, ‘Dynamic stiffness and seismic response of pile groups’, Research Report R82-03, Massachusetts Institute of 

5. G. Waas and H. G. Hartmann, ‘Analysis of pile foundations under dynamic loads’, Conj struct. mech. reactor technol. Paris (1981). 
, G. Waas and H. G. Hartmann, ‘Seismic analvsis of pile foundations including soil-de-soil interaction’, Proc. 8th world conf: 

1024-1041 (1978). 

750-754 (1979). 

M. ONeill and R. Dobry) ASCE, New York, 1980. 

Technology, 1982. 

earthquake eng. San Francisco, 5, 55-62 (1984): 
M. Sheta and M. Novak, ‘Vertical vibration of pile groups’, J .  geotech. eng. div. ASCE 108, 570-590 (1982). 
T. R. Tyson and E. Kausel. ‘Dynamic analysis of axisymmetric pile groups’, Research Report R83-07, Massachusetts Institute of 
Technology, 1983. 
T. Kagawa, ‘Dynamic lateral pile group effects’, J. geotech. eng. div. ASCE 109, 1267-1285 (1983) 
T. Nogami, ‘Dynamic group effect in axial responses of grouped piles’, J. geotech. eng. d i n  ASCE 109, 225-243 (1983). 
I. Sanchez-Salinero, ‘Dynamic stiffness of pile groups: Approximate solutions’, Geotechnical Engineering Report GR83-5, University 
of Texas at Austin, 1983. 
J. M. Roesset, ‘Dynamic stiffness of pile groups’, Pile Foundations, ASCE, New York, 1984. 
C. H. Chen and J. Penzien, ‘Seismic modeling of deep foundations’, Report No. EERC-84/19, Earthquake Engineering Research 
Center, University of California, Berkeley, CA, 1984. 

c 

T. G. Davies, R. Sen and P. K. Banejee,-‘Dynamic behavior of pile group in inhomogeneous soil’, J .  goetech. eng. din ASCE 111, 
1365-1379 (1985). 
B. El Sharnouby and M. Novak, ‘Static and low-frequency response of pile groups’, Can. geotech. j .  22, 79-94 (1985). 
P. K. Banejee and R. Sen, ‘Dynamic behavior of axially and laterally loaded piles and pile groups’, Dynamic Behaviour of 
Foundations and Buried Structures, Elsevier, New York, 1987, pp. 95-113. 
H. G. Poulos and E. H. Davis, Pile Foundation Analysis and Design, Wiley, New York, 1980. 
R. Butterfield and P. K. Banerjee, ‘The elastic analysis of compressible piles and pile groups’, Geotechnique 21, 43-60 (1971). 
R. F. Scott, Foundation Analysis, PrenticeHall, Englewood Cliffs, N.J., 1981. 
R. Dobry and G. Gazetas, ‘Simple method for dynamic stiffness and damping of floating pile groups’, Geotechnique 38, 557-574 
(1988). 
M. F. Randolph and C. P. Wroth, ‘Analysis of deformation of vertically loaded piles’, J. geotech. eng. dio. ASCE 104, 1465-i488 
(1978). 
M. F. Randolph and C. P. Wroth, ‘An analysis of the vertical deformation of pile groups,’ Geotechnique 29, 423-439 (1979). 
M. Novak, ‘Dynamic stiffness and damping of piles’, Can. geotech. j .  11,574-598 (1974). 
D. Angelides and J. M. Roesset, ‘Dynamic stiffness of piles’, Nwnerical Methods in Ofshore Piling, Institution of Civil, Engineers, 
London, 1980, pp. 75-82. 
G. Gazetas and R. Dobry, ‘Horizontal response. of piles in layered soils’, J .  geotech. eng. ASCE 110, 2 W  (1984). 
H. Kanakari, ‘Dynamic response of axially and seismically loaded piles’, M.S. Thesis, SUNY at Buffalo, 1990. 
J. P. Wolf, Dynamic Soil-Structure Interaction, Prentice-Hall, Englewood Cliffs, N.J., 1985, pp. 166172. 
J. P. Wolf, Soil-Structure Interaction in the Time-Domain, Prentice-Hall, Englewood Cliffs, N.J., 1988. 
N. Makris and G. Gazetas, ‘Phase velocities and displacement phase differences in a harmonically oscillating pile’, Technical Report 
NCEER-90, SUNY at Buffalo, 1990. 
A. S. Veletsos and K. W. Dotson, ‘Vertical and torsional vibration of foundations in inhomogeneous media’, Technical Report 
NCEER-87-0010, Rice University, 1987. 
E. Kausel, ‘An explicit solution for the Green Functions for dynamic loads in layered media,’ Research Report R 81-13, 
Massachusetts Institute of Technology, 1981. 
P. K. Banejee and T. G. Davies, ‘Ansysis of pile groups embedded in Gibson soil’, Proc. 9th int. con5 soil mech.find. eng. Tokyo I, 
318-386 (1977). 




